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Stochastic resonance occurs when a nonlinear dynamical system is periodically modulated in the pres-
ence of noise. We study in this paper the effect of including quantal corrections on the thermal transi-
tion rates of such a system, by using the Gaussian effective potential. We demonstrate that these correc-
tions sharpen the peak of the signal-to-noise ratio and shift it toward a lower noise variance, in general.
By studying the symmetric double-well system over a range of parameters, we are also able to show that
the extreme quantal case of this system demonstrates no stochastic resonance, in agreement with recent

calculations.

PACS number(s): 05.45.+b, 03.65.Sq, 05.40.+j, 02.50.Ey

I. INTRODUCTION

Nonlinear dynamical systems when periodically modu-
lated in the presence of noise exhibit the phenomenon of
stochastic resonance [1-8)]. This is manifested as a max-
imum in the signal-to-noise ratio (SNR) as a function of
noise strength. The canonical example of such a system
is a one-dimensional bistable system (a double-well poten-
tial; see Fig. 1) that is subject both to random fluctuations
(characterized equivalently by a temperature or the vari-
ance of these fluctuations) and a small-amplitude
sinusoidal modulation of the potential characterized by
its frequency. The response, i.e., the “signal” is then the
transition between the two wells where for simplicity we
consider a symmetric potential. In the absence of the
fluctuations, there are no transitions of the system be-
tween the two wells unless the driving amplitude is so
large as to effectively eliminate the central barrier, in
which case the modulation of the system and the
response are fully correlated. In the small-amplitude re-
gime (where we stay throughout this paper), there is thus
no signal in the absence of fluctuations. Adding some
noise (with small variance) creates a nonzero probability
of transition. As the variance of the fluctuations is in-
creased, the probability of transition is also increased.
Given that the probability of transition depends on the
barrier height, we hence expect there to be increasing
correlation between the sinusoidal modulation of the bar-
rier height and the system response as the noise variance
is increased from zero. At arbitrarily large noise vari-
ances, however, we expect the noise to render the barrier
(and its small-amplitude variation) effectively invisible;
there should thus be no correlation between the driving
and the system response. This intuition is quantified in a
peak in a graph of SNR versus noise variance, and is
what is termed stochastic resonance [5]. A varie.y of >ys-

*Present address: Chemical Physics Theory Group, Dept. of
Chemistry, University of Toronto, Ontario, Canada M5S 1A1.
fAuthor to whom correspondence should be addressed.

1063-651X/95/51(4)/2925(8)/$06.00 51

tems has been argued to exhibit this phenomenon; this
has been verified by experiments and simulations in sys-
tems ranging from the macroscopic (the Earth’s climate
[3]) through the mesoscopic (e.g., the bistable ring laser
[4] to the microscopic (e.g., the Schmitt trigger [6] and
SQUID loops [7]).

Although these systems have included those that are
classified as “quantum” systems, the usual analysis of sto-
chastic resonance has been from the perspective of a clas-
sical potential system. We now address the question of
the inclusion of quantum effects in considering the
phenomenon of stochastic resonance.

Recently, Lofstedt and Coppersmith [8] have analyzed
the notion of quantum stochastic resonance. Their model
of the two-well system is a quantum-mechanical two-state
system coupled to an Ohmic heat-bath from which the
dissipation is obtained. The signal is then the transition
between the two states; the transition rates are obtained
[9] with the canonical Caldeira-Leggett approach [10].
Among the other results they have obtained is the
demonstration that there is no quantum stochastic reso-
nance for the symmetric double-well problem. Their ap-
proach lies in the extreme quantum regime; patently,

Y

FIG. 1. The double-well potential —yx 2/2+Bx */4 in arbi-
trary units; ¥ and [ are arbitrary here. x =b and x =c are the
maximum and one of the minima, respectively.
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since quantum mechanics underlies classical mechanics,
and the classical symmetric problem does display sto-
chastic resonance (it is in fact the paradigm for the
phenomenon) this result cannot hold true in the classical
limit of the symmetric double-well quantum system. The
seeming contradiction is easily resolved by the realization
that the classical limit of the double-well system is not a
two-state system but involves, in fact, all the low-lying
states of the potential. In this limit, an analysis similar to
Lofstedt and Coppersmith would then be very complicat-
ed since a multitude of transition rates would have to be
considered, and the notion of system transitions becomes
hard to pin down. Physical intuition and the correspon-
dence limit, however, indicate that there should be a way
to understand the near-classical problem as the classical
problem with “corrections.” In this paper, we provide a
way of doing so using the semiquantal approach of the
Gaussian effective potential (GEP) [11,12].

The GEP provides a way of quantifying our intuition
of the qualitative changes expected in a dynamical prob-
lem if quantum effects are considered. For the double-
well problem, the basic effects expected are as follows.
First, we expect the effect of quantal tunneling processes
to effectively lower the height of the central barrier.
Secondly, we expect the zero-point quantum fluctuation
to effectively raise the minimum of each potential well. A
third effect, which has a minor impact on the end result
but complicates the calculations, is that the presence of
states symmetric about the central barrier leads to an
effective minimum at the barrier itself. This is a shallow
minimum in the classical limit, as we shall demonstrate.
Accounting for its presence, however, ultimately helps us
recover the conclusions of Lofstedt and Coppersmith in
the extreme quantum regime.

The paper is organized as follows. In the next section,
we motivate the GEP, starting from Ehenfest’s theorem,
and demonstrate that its derivation remains valid in the
presence of driving and a classical noise source. We then
derive an explicit expression for the noise-driven transi-
tion rates for the semiquantal system to which end we
adapt the theory of McNamara and Weisenfeld [5] on the
classical problem. In Sec. IV, we present the quantita-
tive results of including quantum effects on the classical
stochastic resonance problem. We conclude with a short
discussion.

II. THE GAUSSIAN EFFECTIVE
POTENTIAL (GEP)

The GEP has been used to study quantum effects such
as zero-point fluctuations and tunneling on the geometry
of classical potentials in field theory and ordinary quan-
tum mechanics [11]. A recent derivation of the GEP
from Ehrenfest’s theorem [12] has enabled its use in
dynamical problems as well. This has been used to
demonstrate that quantum effects destroy chaos in the
classically chaotic Hénon-Heiles problem, dominantly,
through tunneling. We are thus motivated to extend the
use of the GEP to understand the impact of quantum
effects on the phenomenon of classical stochastic reso-
nance as well.

In this section we rederive the GEP, extending our
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analysis to the case of a time-dependent potential in the
presence of a classical noise source. Before we proceed to
the derivation of the dynamical equations, however, we
specify our model system. We assume a Hamiltonian of
the form

/\2
ﬁ=%+VO($c)+$cF(t), 80

where V(X ) specifies the potential of the “unperturbed”
problem. We use linear coupling to introduce the exter-
nal environment; the term F(¢) includes both the small
amplitude perturbation and the effect of a classical ran-
dom noise source. The starting point is the equations of
motion for the centroid of a wave packet:

d S YN
E(x)——(p), 2

dt pr= < ax

where ( ) denotes the quantum expectation value. In
general, these two ordinary differential equations (ignor-
ing for the moment the stochastic variable) camouflage
an infinite system of ordinary differential equations
through the nonlocal character of the function
(dV,(X)/0x ). We may, however, approximate the sys-
tem by a finite one by first making the Taylor series ex-
pansions of all functions G (%) as

>—F(t) ) (3)

(G(ﬁ))Z%(Ku”)G("), @)

where Au"=1%—{% ) and G(”)=6”G/au”|(ﬁ). We can
then either truncate the infinite system at a given finite
order or take the semiquantal approach in making the
time-dependent variational ansatz that the wave packet is
always of the (normalized) form

W(g,t)=(2mp?) " exp{i[ A(g—x)*+plg—x)]} .  (5)
This implies the relations
(X)=x, (6)
(p)=p, (7)
142m
(Ax2m>=———L(2m)' (no summation) , (8)
m2m
(Ax2m+1)=0’ (9)
2 2 ___ﬁ_z 2072
p*(Ap?) 4 +p°II”, (10)
(AxAp+ApAx )=2pIl , (11)
where
11 1
=—+4i— . 12
A 2 +i 1 (12)

The variables p,Il are thus the quantal ‘“fluctuation”
variables.

This yields the following equations of motion of the
wave packet in terms of its parameters:

dx
ax _ (13)
dt D,
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2m
5L yem V0 —F0),

w mi2"
m=0,1,..., (14
%‘f=n, (15)
ﬂ_ﬁ_z_ _ﬂ_ (2m)
dt 4p} 2 g Ve )

m=12,.... (16)

As in the absence of the external force, this yields a clas-
sical extended potential system as our approximation to
the Hilbert space. The classical degrees of freedom are
now the ‘““average” variables x,p and the “quantal” vari-
ables p, I1, respectively; the associated Hamiltonian is

2 2
Hext=£2—+%—+Vext(x’p) ’ (17)

Vext(X,0)=Vo(x)+xF(t)

2 2m
+ s LT e, m=1,2...,
80> o mn”

(18)

where the subscript ext indicates the “extended” poten-
tial and Hamiltonian.

The structure and implications of this extended Hamil-
tonian formulation have been previously discussed in de-
tail [13]. The crucial point to note in this derivation is
that since the noise and modulation were introduced
through linear coupling to the original problem, they ap-
pear only in the equations for the average or ‘“classical”
variables x,p. Hence, all previous considerations of this
system carry through, taking care only to introduce the
external force where appropriate. In particular, the adia-
batic elimination of the ‘““quantal” variables p, Il proceeds
as before. This is done under the usual ‘“slaving” as-
sumption [14] that these variables have a dynamical time
scale much shorter than that of the average variables.

With this assumption, we solve for the steady-state
values of the variables p,II from Egs. (15) and (16) and
substitute these (as functions of x) in Eq. (14). In the ex-
tended potential formulation this has the even simpler
mathematical meaning of minimizing the Hamiltonian
H,., with respect to these variables to yield
Pmin(X), I i(x). Patently, for the particular form of the
Hamiltonian chosen above, I1_;, =0. We need thus solve
only for p.;.(x); substituting this back in V,; yields a
function V. g(x) which is termed the Gaussian effective
potential (GEP).

We now apply this procedure to the double-well Ham-
iltonian. With

a2 a2 4
_p°_yx"  BX
a 5 St (19)

the extended Hamiltonian is

H

ext

2 2
=2 "y 2y oy, 1
) ) 2(x —i—p)+8102

+§(x4+3p4+6x2p2) . (20)

Minimizing as above leads to the effective Hamiltonian
2

Heﬂ=i’2—+ Vealx) 21)
2 4 2
_rx Bx #Q 3P 2
Veﬁ' 2 + 4 + 2 1602 ’ ( )
where we define
=L 23)
p
Q is the largest solution of the equation
Q3+(7/—3/3x2)9.~—-3%@=0 (24)

and is hence an implicit function of x.

Equations (21)—(24) define the effective potential for
our problem consisting of the classical potential with
semiclassical or semiquantal corrections. We now study
its shape for various parameter ranges.

There are three parameters to be considered: #,7,8.
The system geometry is, however, completely defined by
the single scaling parameter & defined as

3
F= 32y ’ 25)
243#*32

which is dimensionless in units of #. This parameter thus
measures the quantal nature of the system, with £—0
defining the extreme quantal case and §— o the extreme
classical case. A reference scale may be set by consider-
ing the ammonia molecule. The double-well potential
may now be seen as the bistable system in which the ni-
trogen atom resides, with the barrier being the plane of
the hydrogen triad. With a mass 5X 10 2% kg scaled to
unity, with a well depth of 4 X 1072 J, and minima sepa-
ration of 4X 107 !! m, the parameters may be scaled as
y=1,8=0.004, #=0.05, which scales the time to be in
units of 107 * sec. This corresponds to £=148.8. The
appropriate semiquantal potential is shown in Fig. 2,
overlaid on the classical potential (=0) for the same pa-
rameters. The dominant effect is the diminishing of the
central barrier height by a factor of about 1 through
quantal tunneling effects.

8ol

FIG. 2. Potentials with £=148.8 (y=1.0, B=0.004,

#=0.05). A, classical potential with #=0; B, semiquantal po-
tential.
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As £ is lowered, we expect to see the other quantal
effects discussed in the Introduction. Figure 3 shows the
semiquantal potential overlaid on the appropriate classi-
cal potential at £=2.0. We now see the minima in the
two wells elevated with respect to the classical minima
due to zero-point fluctuation effects. This appears at all
scales, of course, but is more visible proportional to the
diminishing well depth at this case. For this range of £
the minima are elevated by a factor of about } and the
barrier lowered again by a factor of {, leading to a semi-
quantal well of approximately 1 the classical well.
Lowering & even further brings out yet another quantum
effect. At £=1.2, shown in Fig. 4, we see a minimum ap-
pearing at x =0. This is due to the lower energy of the
symmetric states compared to states displaced from the
symmetry axis. The extreme case of this effect is shown
in Fig. 5 with £=1.0 where the quantal fluctuations and
tunneling have rendered the central barrier invisible and
the system effectively resides in a single well. At this
scale, there can be no transitions and hence no semiquan-
tal stochastic resonance. This result in the extreme quan-
tal case thus agrees with the result of Lofstedt and Cop-
persmith, who have argued that there is no quantum sto-
chastic resonance for the symmetric system. We point
out, however, that the inherent difference in our two ap-
proaches is that the transition rates with which they look
for stochastic resonance are the quantum-mechanical
tunneling rates, while we consider the thermal transition
rates (as in the classical system) and are estimating the
effect of tunneling and quantal fluctuations on these rates.

We calculate these effects for the case of larger £ down
to £=1.2 approximately, in the next section.

III. CALCULATION OF TRANSITION RATES

The calculation of transition rates for classical stochas-
tic resonance in the double-well problem is done most
simply by following McNamara and Weisenfeld [S]. In
this method, one starts with a two-state master equation;
under the usual assumption that the drive frequency and
interwell transition rates are much slower than the in-
trawell relaxation rate, the time-dependent transition
rates can then be derived. This enables the computation
of an autocorrelation function, and thus the signal-to-

0.005 1 Y

0.0025

-4

-0.0125

-0.015 ¢

FIG. 3. Same as Fig. 2, £=2.0.
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FIG. 4. Same as Fig. 2, £=1.2.

noise ratio (SNR). Recent nonperturbative calculations

show that the result thus perturbatively derived provides

a good qualitative description of the dynamics even when

the driving modulation of the potential is not small [8].
To use this method, we specify F(t) as

F(t)=ecos(wt)+{(2) , (26)

where € is the small amplitude of the modulation and § is
a classical noise variable which is assumed to have the
properties

=0, 27)
E(6,)E(t,)=2D8(t, —t,) , (28)

where the overbar represents the stochastic average. D is
hence the variance of the noise and a measure of its inten-
sity. Under these conditions, therefore, the SNR of sto-
chastic resonance for a double-well system (independent
of its precise shape) is computed to be [5]

T a%”lz

RN =~
SNR
4 a

(29)

The symbols multiplying the constant 7/4 on the right-
hand side have the following meanings: 7 is € scaled by

Y
\ /
_Iz R/_y 2 X
-0.0003
~0.001
~0.0015
-0.002
-0.0025

FIG. 5. Same as Fig. 2, £=1.0. Note that the system is
effectively a single well.
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the variance D of the noise and the geometry of the po-
tential as detailed below. @, and a; are defined by the
equations

W, (t)=f(uLmncos(wt)) (30
=1layFancos(wt)+a,n’cos*(wt)F + -+ ],

(31

where the W, are the transition rates from the =+ states,
defined as the left- and right-hand well, respectively.
These have been assumed to be some function f which
can be expanded around its value at =0 (equivalently
around u) as shown, where pu is the static potential bar-
rier height 8V also scaled by the noise variance D. The
expansion coefficients a, in the perturbative calculation
of the time-dependent transition rates can be computed
as

_ (—1)" dnf
n! d[ncos(wt)] |,=0

(32)

1
7%n

To obtain these quantities, therefore, we need to calcu-
late W . for our semiquantal system. This is usually done
using Kramer’s rule [15] to give the escape time out of ei-
ther well as

= __2 exp(V
max
‘/|V£x3;x| l] gl)n

where V., and V; are the values of the potential at the
central barrier and at either minimum, the superscript (2)
denotes the second derivative of the potential at that
point, and the vertical bars denote taking the absolute
value. Note that the semiquantal approach requires the
replacement of V(x) by Vg(x). However, the V 4 we
have derived in the preceding section does not permit the
use of this formula in its entirety. This is because the
shape of the potential obtained creates a shallow
minimum at the classical V,,. While this does not affect
our treatment of the system as an essentially double-well
problem (at least up to £=1.2), it does invalidate the par-
abolic approximation used in deriving Kramer’s rule: we
would get artificially large escape times from this formu-
la. To obtain the correct form, we have to return to the
derivation of Kramer’s rule to find our point of depar-
ture.

The solution for the escape time out of a potential well
with one absorbing and one reflecting barrier, using the

|

Wgl=1g — Vi) » (33)

backward Fokker-Planck equation, can be shown to be
(15]

V(y)

. 1 p%o
T(c—»xo)=3fC dy exp

—V(z)

D ’ (34)

ij dz exp

where c is, as labeled in Fig. 1, the initial position (at one
of the minima) and x, is in the vicinity of, but beyond the
maximum at, b. D is the variance of the fluctuation vari-
able as before. The usual approximation of this double
integral by a product of integrals holds even for our sys-
tem. The argument goes as follows. Near the central
maximum (x =~0), ¥ (x) has its greatest value. Therefore,
given that D is small, exp(—V(z)/D) is very small
around z=0. Hence, the integral over z of
exp(—V(z)/D) is a very slowly varying function of y (its
upper limit) near y =0. On the other hand, exp(V(y)/D)
has a sharply peaked maximum around y =0. This en-
ables us to replace the upper limit of the integral over z
with O, thus making it independent of the y integral. We
now have the product of two single integrals:

1 0 —V(z)
T(c—»xo)zB—{f_wdzexp D
%o Viy)
X fc dy exp N (35)

The exponentially dominant contributions to the two in-
tegrals are around the extrema and the above expression
can be very well approximated by

c+8, —
T(C—’xo)z‘lls fc—sc dz exp —Vz)
b+3, (y)
X fb«&,, dy ex T , (36)

where the neighborhoods —8& to +& are chosen around
the extrema such that the value of the integrals are in-
sensitive to the precise choice of 8.

At this point the two integrals are usually evaluated
[15] through the parabolic approximation where the in-
tegrand is expanded around the extrema and leads to
Kramer’s rule. In our case, this approximation can only
be applied to the integral around the minimum, where it
is clearly valid. We then get

c+8 — © — —c)2
fc_a:dz exp %El =~ f_wdz exp ;(C) _{z—¢) Vm(c)} (37
_[2ep " [ =¥ 38)
V(Z)(C) D

The maximum is too slowly varying for the parabolic approximation; hence, our final expression for the semiquantal

transition rate T’ is
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1/2
exp

—

2aD ﬂ(c Ver(y)
2)

eﬁ'(c)

Tql

C<—*xO)== (39)

dy exp

[ b+6b

D

num

with the subscript num indicating a factor to be computed numerically; note that we have now explicitly indicated that
the potential we are using is the semiquantal one V. This expression can now be used for the comparison of the semi-
quantal system with the associated classical one.

The final step is to use this expression to compute the quantities o, and a;. We shall do this with the same perturba-
tive approach as McNamara and Wiesenfeld [5]. With the potential modulation, the above expression transforms to

1/2
} exp f d}’

where we have now explicitly placed the barrier at x =0. In including the modulation in the first term, we approximate
the minimum as remaining at +¢. We have to invert this expression to find the transition rate W. We can then com-
pute oy and a,. Noticing that ec /D is what we have called 7 earlier, we get

- Veﬂ'(C)

2mD D + ——cos(a)t

(y) €y
+__
V(

D D ) (40)

num

Tdnve 1 { cos(wt) ’

ay=2f(n=0) (41)
2 172 —1
2D V(eﬁ' (c) Veﬁ( c) f + ,Sd Vetf(y ) 42)
- exp D s Wexp -
To compute a; we interchange the order of integration and differentiation to obtain
af
“ d(ncos(w)) |,=o (
172 -
2D V(e?ﬁ') (c) Veﬁ( c) f + Bd Veﬂ‘(y ) : (44)
- exp D _ Byexp -
20V 2(e) | V) | [ 42, V() f e Very) s)
. exp D _Wex D . v .
-1
Veg(y) Veg(y)
=qyil+ f +5dylexp Lery) f +8dy exp l ] (46)
—38 ¢ D num -3 num
=a,, (47)

where the integral in the numerator of the penultimate
equality vanishes due to antisymmetry of the intgrand
and symmetry of the range of integration. We note that
this same equality of a, and «a; was obtained by
McNamara and Weisenfeld in their analysis of the classi-
cal system [5].

the peak about twice that of the classical system; (ii) the
peak is also visibly narrower, i.e., it is a sharper reso-
nance; (iii) most significantly, however, the value of the
noise variance D at resonance for the classical system is

These two expressions complete our analysis. We are SNR
now ready to compute the SNR numerically for various 1.0
cases. ,

F
IV. RESULTS F
Our results are presented in Figs. 6-9. In Fig. 6, we 05

have plots of the normalized SNR for the ammonia mole-
cule (as shown in Fig. 2). The parameter £=148.8 and
the system was modulated with a driving amplitude of
€=0.25. This corresponds to a modulation of the barrier
height by approximately 10%. In Fig. 6, curve B shows
the semiquantal result compared to curve 4, which is the
classical result. Both have the characteristic stochastic
resonance peak. However, there are significant
differences: (i) The semiquantal SNR has a magnitude of

>0

20 40 60 80
D

100 120 140

FIG. 6. Scaled SNR for £=148.8, €=0.25, A, classical; B,
semiquantal; C, diminished classical.
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SNR
1.0
0.5
A
B
0.005 0.01 0.015  0.02 0.025 0.03

D

FIG. 7. Scaled SNR for £=2.0, e=0.00025. A4, classical; B,
semiquantal.

at D approximately equal to the barrier height, i.e.,
D =60. The peak for the semiquantal system is at
D =25. This is both lower than the classical value and
the approximate semiquantal barrier height 8V 4=40.

To verify that the semiquantal result is not merely due
to the lower barrier height, we have plotted in Fig. 6,
curve C, the SNR for the classical ammonia system but
with barrier height artificially lowered to that of the sem-
iquantal system. This system peaks, as expected, at
D =40. The difference between the curves C and A4
demonstrates that the semiquantal geometry matters as
well as the adjustment of barrier height.

In Fig. 7, we show the classical and semiquantal SNR
plot for £=2.0. This normalized plot shows the same
characteristics as the previous one. (The actual height of
these peaks is, however, at ~ 107%.) As the dimensions of
the system shrink, the difference between the classical
and semiquantal barriers increases. This complicates our
choice of driving amplitude, since one which is “small”
for the classical system may not be so for the semiquantal

system. In this figure, for example, we choose
100 5
80
a
o 60
<
=
«
=
§ 40
]
20 1
0 T 1
[0 100 200
g
FIG. 8. Classical (upper curve) and semiquantal (lower

curve) resonant values for D as a function of £. In each case €
equaled 10% of the semiquantal barrier height.

0.6 4

l:Dchsq:l/Dc]
o
wn
a

04

T T T T T 1
[} 200 400 600 800 1000 1200
g

FIG. 9. Relative semiquantal shift in resonant value for D
from the classical value as a function of & (€ as in Fig. 8).

€=0.00025 which is approximately 10% of the semi-
quantal barrier height but is about 5% of the classical
height. The same essential effects as in the previous case
are seen, irrespective. :

We do not take our calculations to lower &; in this re-
gime the presence of the central minimum invalidates the
two-state master equation approach of McNamara and
Weisenfeld. However, as argued before, in the limit
£—0, the central minimum dominates the geometry of
the system and implies the absence of stochastic reso-
nance, in agreement with Lofstedt and Coppersmith [8].

We can, however, compute reasonable plots of the
SNR for larger values of £&. These are summarized in
Figs. 8 and 9. In Fig. 8 we plot the value of D at which
the SNR peaks for various § for the classical and semi-
quantal systems. The systems were driven at about 10%
of the semiquantal barrier height for these calculations.
In this figure we see the divergence between the classical
and semiquantal results. Figure 9 shows the asymptotics
that we expect to see as quantal effects become less
significant at large scales. The relative semiquantal shift
in the resonance value D is plotted versus £ in this figure.
This shift saturates at about 57% —its asymptotic ex-
istence is expected because the limit #—O0 (or in our
£— ) is singular in monitoring tunneling effects. There
always exists a difference due to the inclusion of tunnel-
ing effects at any length scale.

We have thus estimated the general effect of including
quantal effects on the classical phenomenon of stochastic
resonance—it is a downward shift in the resonant value
of the nose variance, an increase in the size of the reso-
nance, and a sharpening of the resonance peak. At the
extreme quantal limit, however, the phenomenon of sto-
chastic resonance vanishes for the symmetric double-well
system in agreement with recent calculations.
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